137 research outputs found

    Non-empirical problems in fair machine learning

    Get PDF
    The problem of fair machine learning has drawn much attention over the last few years and the bulk of offered solutions are, in principle, empirical. However, algorithmic fairness also raises important conceptual issues that would fail to be addressed if one relies entirely on empirical considerations. Herein, I will argue that the current debate has developed an empirical framework that has brought important contributions to the development of algorithmic decision-making, such as new techniques to discover and prevent discrimination, additional assessment criteria, and analyses of the interaction between fairness and predictive accuracy. However, the same framework has also suggested higher-order issues regarding the translation of fairness into metrics and quantifiable trade-offs. Although the (empirical) tools which have been developed so far are essential to address discrimination encoded in data and algorithms, their integration into society elicits key (conceptual) questions such as: What kind of assumptions and decisions underlies the empirical framework? How do the results of the empirical approach penetrate public debate? What kind of reflection and deliberation should stakeholders have over available fairness metrics? I will outline the empirical approach to fair machine learning, i.e. how the problem is framed and addressed, and suggest that there are important non-empirical issues that should be tackled. While this work will focus on the problem of algorithmic fairness, the lesson can extend to other conceptual problems in the analysis of algorithmic decision-making such as privacy and explainability

    Progressing Towards Responsible AI

    Get PDF
    The field of Artificial Intelligence (AI) and, in particular, the Machine Learning area, counts on a wide range of performance metrics and benchmark data sets to assess the problem-solving effectiveness of its solutions. However, the appearance of research centres, projects or institutions addressing AI solutions from a multidisciplinary and multi-stakeholder perspective suggests a new approach to assessment comprising ethical guidelines, reports or tools and frameworks to help both academia and business to move towards a responsible conceptualisation of AI. They all highlight the relevance of three key aspects: (i) enhancing cooperation among the different stakeholders involved in the design, deployment and use of AI; (ii) promoting multidisciplinary dialogue, including different domains of expertise in this process; and (iii) fostering public engagement to maximise a trusted relation with new technologies and practitioners. In this paper, we introduce the Observatory on Society and Artificial Intelligence (OSAI), an initiative grew out of the project AI4EU aimed at stimulating reflection on a broad spectrum of issues of AI (ethical, legal, social, economic and cultural). In particular, we describe our work in progress around OSAI and suggest how this and similar initiatives can promote a wider appraisal of progress in AI. This will give us the opportunity to present our vision and our modus operandi to enhance the implementation of these three fundamental dimensions

    European strategy on AI: Are we truly fostering social good?

    Get PDF
    Artificial intelligence (AI) is already part of our daily lives and is playing a key role in defining the economic and social shape of the future. In 2018, the European Commission introduced its AI strategy able to compete in the next years with world powers such as China and US, but relying on the respect of European values and fundamental rights. As a result, most of the Member States have published their own National Strategy with the aim to work on a coordinated plan for Europe. In this paper, we present an ongoing study on how European countries are approaching the field of Artificial Intelligence, with its promises and risks, through the lens of their national AI strategies. In particular, we aim to investigate how European countries are investing in AI and to what extent the stated plans can contribute to the benefit of the whole society. This paper reports the main findings of a qualitative analysis of the investment plans reported in 15 European National Strategie

    Covid-19 and tracing methodologies: A lesson for the future society

    Get PDF
    As the new coronavirus (SARS-CoV-2) surged across the globe, new technical solutions have supported policy makers and health authorities to plan and modulate containment measures. The introduction of these solutions provoked a large debate which has focused on risks for privacy and data protection. In this paper we offer an analysis of the available technical approaches and provide new arguments to move beyond the ongoing discussions. In particular, we argue that the past debate missed the opportunity to highlight the societal aspects of privacy and to stimulate a broader reflection on the actions needed to serve the good of society. With this paper, as well as providing an accessible review of the technical and legal aspects of the proposed solutions, we aim to offer new stimuli to reconsider contact tracing and its role in helping countries navigate the current pandemic

    Measurement of νˉμ\bar{\nu}_{\mu} and νμ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(νμ+nucleusμ+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(νˉμ+nucleusμ++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(νˉ)σ(ν))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K νˉ/ν\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of θμ\theta_{\mu}500 MeV/c. The results are σ(νˉ)=(0.900±0.029(stat.)±0.088(syst.))×1039\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure

    Underground operation of the ICARUS T600 LAr-TPC: first results

    Full text link
    Open questions are still present in fundamental Physics and Cosmology, like the nature of Dark Matter, the matter-antimatter asymmetry and the validity of the particle interaction Standard Model. Addressing these questions requires a new generation of massive particle detectors exploring the subatomic and astrophysical worlds. ICARUS T600 is the first large mass (760 ton) example of a novel detector generation able to combine the imaging capabilities of the old famous "bubble chamber" with an excellent energy measurement in huge electronic detectors. ICARUS T600 now operates at the Gran Sasso underground laboratory, studying cosmic rays, neutrino oscillation and proton decay. Physical potentialities of this novel telescope are presented through few examples of neutrino interactions reconstructed with unprecedented details. Detector design and early operation are also reported.Comment: 14 pages, 8 figures, 2 tables. Submitted to Jins

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase δCP\delta_{CP} can be determined to better than 19 degrees for all possible values of δCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3σ3\,\sigma (5σ5\,\sigma) for 7676% (5858%) of the δCP\delta_{CP} parameter space

    Measurements of neutrino oscillation in appearance and disappearance channels by the T2K experiment with 6.6 x 10(20) protons on target

    Get PDF
    111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee comments111 pages, 45 figures, submitted to Physical Review D. Minor revisions to text following referee commentsWe thank the J-PARC staff for superb accelerator performance and the CERN NA61/SHINE Collaboration for providing valuable particle production data. We acknowledge the support of MEXT, Japan; NSERC, NRC, and CFI, Canada; CEA and CNRS/IN2P3, France; DFG, Germany; INFN, Italy; National Science Centre (NCN), Poland; RSF, RFBR and MES, Russia; MINECO and ERDF funds, Spain; SNSF and SER, Switzerland; STFC, UK; and the U. S. Deparment of Energy, USA. We also thank CERN for the UA1/NOMAD magnet, DESY for the HERA-B magnet mover system, NII for SINET4, the WestGrid and SciNet consortia in Compute Canada, GridPP, UK, and the Emerald High Performance Computing facility in the Centre for Innovation, UK. In addition, participation of individual researchers and institutions has been further supported by funds from ERC (FP7), EU; JSPS, Japan; Royal Society, UK; and DOE Early Career program, USA
    corecore